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Exact results for the nonlinear diffusion equations 

at - a x  \- -..- 

J R King 
Department of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, 
UK 

Received 13 February 1991 

Abstract. We exploit local and non-local symmetries of the two equations of the title and 
of some related equations. Some new exact solutions are derived and some specific boundary 
value problems of physical significance are considered. 

1. Introduction 

The nonlinear diffusion equation with power law diffusivity 

JU a 
at  ax 

arises in a large number of physical contexts. This paper is largely concerned with two 
particular instances of (1.1) both belonging to the ‘fast’ diffusion class (m > 0), namely 
the cases m =$ and m =$ 

We shall make use of Lie group methods for partial differential equations; the 
necessary background to these is given in, for example, Bluman and Cole [ 11. We shall 
apply the group properties determined by Akhatov et a/  [2] for (1.1) and for some 
related equations; their results show the respect in which the values m =$ and m =$ 
are special, and therefore worthy of separate consideration. In fact, it has been known 
for some time (Ovsiannikov [3]) that the invariance group of equation (1.1) with m =$ 
has one more parameter than that for other values of m # 0, so that in the former case 
there are more self-similar forms of solution. It has also been shown (Munier et a1 
[4]) that there is a non-local transformation between two equations of the form (1.1) 
with m = m, and m = m2, provided that m, + m2 = 2. Hence the two equations we are 
discussing can be mapped into one another. 

Writing u=du/ax, equation (1.1) with m #  1 becomes 
1-m 

J V  1 a 
at I - m a x  (1.2) 

Even though the values of m which we are considering are very special, applications 
are known for each. A slightly generalized version of equation (1.1) with m =$ is used 
by Henninger et 01 [5] to describe heat conduction in silicon, while (1.2) with m =$ 
models heat transfer in superfluid helium (Dresner [6,7]). Furthermore, equation (1.1) 
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with m lying in the appropriate range arises in many other applications. For example, 
models of dopant diffusion in silicon give (King [SI) 

M - 1  m =- 
M + 1  

where M is the number of atoms in a dopant cluster. The choice M = 5 gives m =$. 
The aim of this paper is to exploit the special group properties for m =$ and m =$ to 
derive new exact solutions and to analyse some specific boundary value problems, 
including some on finite domains. We start by outlining the relevant Lie group 
properties. 

2. Group properties 

In table 1 we summarize some of the relevant relationships which have been established 
elsewhere. This table follows from table 1 of King [9], though the notation is different. 

Table 1 

In table 1 the vertical solid lines represent hodograph transformations with 

v = x  X=V T = 1  (2.13) 

V* = x* X*="* T* = r *  (2.14) 

and 

w * = x  x*= w T * =  T with V* = 11 V, U* = -U /  V'. (2.15) 

The vertical dotted lines denote Legendre transformations, so that 

w +  w=xx w * +  w*=x*x*. (2.16) 

There are point transformations between equations (2.1) and (2.10) and between (2.3) 
and (2.12) given by 

U* = -x3u w *  = -w/x x* = I/x 1*= I (2.17) 

and the additional relationships 

U = l / u  U * =  l / U *  (2.18) 
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and 

u * = x u - w  U = x*u* - W* (2.19) 

also hold. 
With regard to (2 .17)  it should be pointed out that certain local relationships 

between variables appearing in tables 1 and 2 of King [9]  were not noted there, namely: * = - z / u  9 = - P I U  (D = - w / y .  

These provide point transformations between equations ( 3 )  and (14), ( 8 )  and (171, 
and ( 1 1 )  and ( 2 2 )  of table 1, and equations (3) and ( 1 0 )  of table 2 in King [ 9 ] .  In 
addition, in table 2 the relation .$ = l / y  was misprinted as 6 = l/u. 

In  what follows we shall make use of results of Akhatov et a/ [ 1 0 , 2 ] .  Having 
introduced the concept of non-local (or quasi-local) symmetries in [ l o ] ,  they gave the 
infinitesimal forms relevant to (2 .1 ) - (2 .6 )  in [ 2 ] .  Here we shall use A to denote the 
infinitesimals, and * to denote the corresponding global forms of the symmetries, so 
that we write 

U * ( X ,  f, U, U, W ;  E ) - U + E U ' ( X ,  1, U, U, W )  

as E + 0, and similarly for the other variables. Thus the equation in unstarred variables 
maps in each case into the same equation in starred variables. The infinitesimal forms 
of the quasi-local symmetries for (2 .1) - (2 .6)  given by Akhatov et al [ 2 ]  may then be 
written as  

U' = atiu + 3a,xu 

$ = a,+ a,x+ (?.a,+ a,)w - a,xw 

i = a,+ a,x - a,x2 

6 =a,+ (a,+ a6)u - a,(w - x u )  

(2.20) 

F =  a,+(2a,+$a6)t 

for (2 .1) - (2 .3) ,  and as 

6 = AtiU - 3 A , U V  

@=A,+ A4X + ( 2 A , + A t i )  W 

P= A,+(A,+A,) V -  A, V*  

(2.21)  

2 = A,+A,X + A ,  w ?= A, + ( 2 A , + ; A 6 ) T  

for (2 .4) - (2 .6) .  In (2 .20)  and (2 .21)  the ai and Ai are arbitrary constants. The parameters 
a7 and A, give the symmetries for which there are no corresponding results for (1 .1 )  
when m is not $ or $. 

Setting a, = 1 and ai = 0 for i = 1-6 in (2 .20)  we may deduce the global forms 

U * = ( l +  E X ) ' U  U* = ( 1  f &X)U - EW 
(2.22) 

W * = W / ( l + E X )  x* = x/(  1 +EX) I* = 1. 

We note that this is a local symmetry for U and w, whereas for U it is non-local because 
U* depends on w =I' U dx. The global forms for U* and x* were noted in King [ l  I]. 

The discrete transformation given by (2 .17)  and (2 .19)  may be derived as a special 
case of (2 .22)  combined with appropriate translations, rescalings and reflections of the 
variables. 

Setting A,= 1 and A; = O  for i = 1-6 in (2 .21)  leads to 

u*= U / ( l + € V ) 3  v*= V / ( I + E V )  
(2.23) w * =  w X * = X + E W  T * =  T. 
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This is a local symmetry for W, but it is non-local for U and V since X* depends on 
W. We note that the symmetries (2.22) and (2.23) map into one another under the 
transformations between (2.1)-(2.3) and (2.4)-(2.6) indicated in table 1. The transfor- 
mation (2.23) may easily be generalized to give 

u*= u/(a,v+p2)3 v* = (alv+Pl)/(a,v+P2) 
(2.24) 

W * = a , W + p l X  x* = 012 w+p2x T*= T 

where a,, a,, p,, p2 are constants such that 

a1P2-a2P1= 1 

Since (2.4)-(2.6) are unchanged when X is replaced by -X and V by - V, this condition 
can be generalized slightly to 

la,P2-a2P,I= 1. 

The choice a2 = PI  = 1, a, = p2 = 0 gives the discrete transformation (2.15) as a special 
case of (2.24). 

The transformation (2.22) can be generalized in a similar fashion to give, in 
particular, 

U* = ( a 2 x  + P 2 ) 3 U  x* = (alx+pl)/(a++/32) t * = t  
(2.25) 

with IuIp2-a2p,I = 1. 

We note that the symmetries for U, w and W are all local (see (2.20) and (2.21)) 
so that the equations (2.1), (2.3) and (2.6) are the forms which will be simplest to deal 
with. 

3. Some exact solutions 

3.1. Known solutions 

The purpose of this section is to briefly show how well known exact solutions to (2.1) 
and (2.4) can be used to generate new exact solutions to (2.1)-(2.6). Applications of 
some of these new solutions will be given in section 4. 

We start by listing some well known exact solutions to (1 .1)  (see, for example, Hill 
[12]) and the corresponding forms for 

and 

where 

J V  Jw 
U =- v =-. 

Jx ax 
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In what follows the pi and ui are arbitrary constants and the functions A ( ? ) ,  g , (q )  
and h i ( q )  are related for each i by 

The expression 

aw 1 

Jt  I - m  
- 

leads to a further relationship. 

(1) Travelling wave solutions 

U =fd17) q = x - 91. 

Here 9 is a constant and the solution to (1.1) is given by 
f, f-" 

- 917 = I,, d J  

For both m =$ and m =;the integral in (3.5) can be calculated explicitly. 
The solutions 

(3.3) 

(3.4) 

(3.5) 

and 

W =  ~ u ~ ~ x - ~ ~ ~ u ~ ~ ~ +  h , ( q )  

can then be evaluated from (3.3); 

1 
f:-" (1 - m ) 9  

g, = U17 -- 

also holds. 

(2) Instantaneous source solutions 
= ,--1/(2-mif ( =x/ t ' / (2 -m' ,  

2 1 7 )  

f2 satisfies 

(3.7) 

1 dJ2 
u2-- qf2= f;"- 

2 - m  d v  
where v2 is an arbitrary constant. For u2 = 0 we obtain the closed form solution 

The corresponding solutions to (3.1) and (3.2) are 

u = v2 In t+g2( q )  

and 

w = u2x In t +  t"'2-"'h 2 1 7  ( ) 

with 

(3.10) 

(3.11) 

2 - m  
I - m  

h, = qg,+-f? - (2- m)u,?  
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(3) Dipole solutions 
= t-ll(l-")f ( = x / t ~ l ~ 2 ( l - ~ ) )  

3 7 )  

We then have 

If v, = 0 then 

In this case 

gd7) " = f - l / ~ 2 ( l - ~ ) l  

and 
w = - U, I n  f + h,( 7)  

with 

g, = -2(fi-" + ( I  - m ) u , ) / 7 .  

U = t'/mf4(7) 

(4) Separable solutions 
f l  = x. 

f4 is given by 

(when m =$ the integral can be calculated explicitly) and 

U =  t""g4(Tj) 

w = t""h4(7) 

with 

and 

(5 )  Steady state solutions 

U =f5(7)  7 = x. 

f s =  {(I - m ) ( v , + F 5 7 ) ) " ( ' - m )  

In this case 

so that 

(3.12) 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 
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and 

We note that under the hodograph transformation 

v = x  X = u  T = t  (3.24) 

under which equation (1.2) maps into another equation of the same form with m 
replaced by 2-m, these solutions transform as follows (in each case G i ( g i ( v ) )  = 7): 

( a )  Solution (3.6) maps to 

V =  qTf G,(X - qu, T )  

which is a solution of the same form. 

( b )  Solution (3.10) maps to 

v =  T1/(2-m) GZ(X- u2 In T ) .  

When uz=O this is equivalent to the form (3.18) 

( c )  Solution (3.14) maps to 

1 v =  TlIiZ(l--m))G 1/(211-r")~ ,(XT 
again a solution of the same form 

( d )  Solution (3.18) maps to 

V =  G4(X/T11m) 

corresponding to (3.10) with u,=O. 

( e )  Solution (3.22) maps to 

V = G,(X - p s T )  

Hence the various cases (1)-(5) (with u,=O in (2)) for m = m ,  and m = 2 - m ,  map 
into one another under (3.24). 

To derive new exact solutions we will now restrict attention to the cases m = 4 and 
m = $  and make use of the symmetries (2.22) and (2.24). The existence of extra 
symmetries for these two cases means that there are many additional similarity forms. 
Here we only discuss the cases where the solutions can be written down exactly. 

3.2. Further solutions f o r  m = $ 
From (2.22) it follows that if 

U = uo(x, 1 )  U = U,(* 1 )  w = WO( x, t )  

satisfy equations (2.1)-(2.3), with 

awo 
Ug=- 

Jx d X  
a uo u0=- 
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then so do  

u = (1+&x)-3uO(- X 1)  
1+EX’ 

= ( 1 + U” (-5- + &WO (2- t )  
1+EX’ 1 + E X ’  

(3.25) 

w=(l+ex)w,(-  X 1 )  

1 + E X ’  

By using the solutions given in (1 ) - (5 )  above to give uo, U, and w,, we may generate 
the following further exact solutions: 

( 1 )  From (3.4)-(3.7) we obtain 

= ( 1 + ( ) 

U=qu , f -~Eq2u1 t2+(  1 +EX)-’g,(?)+ Ehl(?) (3.26) 

W =  q u , t x - f ( l + E x ) q Z u , t 2 + ( 1 + E x ) h l ( ? )  

where 7 = x / (  1 + E X )  - qt. 

( 2 )  From (3.8)-(3.11) with u,=O we obtain 

(1+EX)-3t-3/2f2(,,) 

U = ( l f E X ) - ’ g 2 ( ) 7 ) + E f 3 / 2 h * ( n )  

w = ( l + ~ X ) t ~ ’ ~ h ~ ( ~ )  

where = x/( 1  EX)^'/^, 

(3.27) 

( 3 )  From (3.12)-(3.15) with u,=O we obtain 

U = (1+&X)-3f3f3(?) 

u = ( ~ + ~ X ) ~ ’ t ’ ~ ~ g ~ ( l ) ) + ~ h ~ ( ~ )  (3.28) 

w = (1 + ex)h3( 7)  

where 7 = x t 3 l 2 / (  1 + E X ) .  
We note that the solutions (3.27) and (3.28) are equivalent to within translations 

of x, etc; under the discrete transformation (2.17) the instantaneous source and dipole 
solutions of (2.1) are mapped into one another. 

In the cases ( 4 )  and (5) the solutions simply map into other solutions of the same 
form. 

3.3. Further solutions for m = 

It follows from (2.24) that if 

U = U,(X,  T )  v = V,( x, T )  w = W,(X, T )  
satisfy equations (2.4)-(2.6) with 

J V,. a wo v, = - ax U -- 
O - J X  
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then further solutions are given in implicit form by 

u,w+p,x= w,(rr,W+p,x, T )  

v = - ( ~ , V o ( ~ , W + P 2 X , ~ ) - ~ l ) l ( ~ 2 V 0 ( ~ 2 ~ + P * ~ ,  T ) - a J  

u = - U o ( a , W + P 2 X T ) / ( ~ 2 V , ( a , W + P , X ,  T)-a,)’ 

with la,p2-a2pII = 1. 
Since translating W by a multiple of X has no effect on U, we take p, = 0 if a, f 0 

and p2 = 0 if a, = 0. We may therefore without significant loss of generality restrict 
attention to the cases 

a,=p,=1 P1=0 a,=a 

so that 

w= Wo(X+aW,  T )  

v= VJX + a w, T)/(1- aV,(X+ a w, 7)) 
U =  U ~ , ( X + U w ,  T ) / ( l - n V O ( X + n w ,  

and 

a , = p 2 = 0  a,=& = 1 

(3.29) 

when 

x = WO( w, T )  

These correspond to (2.23) and (2.15) respectively. 

v = I /  V,( w, T )  U = - U,( w, T ) /  Vi( w, T ) .  (3.30) 

These transformations generate further solutions as follows: 

(3.31) 

(3.32) 

(2) When u,=O, the appropriate forms in (3.8)-(3.11) are 

f2(v)  = 8 ( d +  ?2)-3’2 

920)) = 8 / G 2 v ( d +  v2)-1’2+A2 

= ~ P L ; ~ ( ~ + T ~ ) ~ ’ ~ + A ~ v  

where A, is a further arbitrary constant, and the transformations (3.29) and (3.30) map 
the solution into another solution of the same form. 
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(3) From (3.12)-(3.15) with u,=O, using (3.29) gives 

W=h3(7)  
V = gdq  )/( P2 - a g 3 ( 7 ) )  

U = T ” ’ ~ , ( v ) / (  T’/’- ag3(.1))’ 
where 7 = ( X  + a W ) /  T”’. 

The transformation (3.30) leads to the separable solution 

(3.33) 

(4) Under (3.29) the solutions (3.16)-(3.18) become 
W =  T3/’h4(q) 

v = T ~ / ~ ~ ~ ( ~  )/ ( 1 - ar3/2g4(7 )) (3.34) 

U =  T3/’f4(7)/(l  -aT3’2g4(7))3 
where v = X + a W .  

a multiple of X, etc, the two forms (3.33) and (3.34) are equivalent. 

(5) Under (3.29), solutions (3.20)-(3.23) become 

The transformation (3.30) gives a dipole solution. To within translations of W by 

where q = X + a W .  
In this case (3.30) gives 

When u,=O, (3.36) may be written as a similarity solution of a standard form: 
W =  T ’ / 4 H ( X / T s / 4 )  
V =  T - ’ G ( X / T S l 4 )  
U = T-’IbF(X/ TSt4)  

where 

(3.36) 

and 
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4. Some boundary value problems 

4.1. Introduction 

In  this section we shall use the infinitesimal representations (2.20) and (2.21) to derive 
self-similar forms of solution for some particular boundary value problems. The 
appropriate similarity variables are determined by the requirement that the bounday 
conditions, as well as the differential equations, be invariant under the continuous 
transformations represented by the infinitesimals. We shall not be able to specify initial 
conditions in advance; these are restricted by the forms of the similarity solutions. 

Knight and Philip [13] have commented on the paucity of exact solutions to 
nonlinear diffusion equations on finite regions, though they fail to note the separable 
solution (3.16)-(3.19) which is known to be important in describing the large-time 
behaviour of certain problems on bounded intervals (see [14, 151). We shall start by 
deriving some new solutions on finite domains, after which we shall consider infinite 
regions. 

4.2. Finite domains 

4.2.1. m =$. We consider boundary value problems for (2.1) on the interval Os x s L. 
Although the infinitesimal 2 seems well suited to such problems, the corresponding 
similarity forms for U seem likely to have very restricted physical applicability. We 
require 2 = 0 at x = 0 and at x = L, so it immediately follows from (2.20) that 

a,=O a ,  = a ,  L. (4.1) 

Here we shall consider only one example, in which (2.1) is governed by 

at x =  L U =  BLtp for t > O  (4.2) 

where Bo,  B,, k and p are constants. Replacing x by L - x  gives another problem of 
the same Fe-. (with !he re!es of Eo and EL 2nd of k znd p interchanged), so we mzy 
restrict attention to the case ksp. 

We note that the choices Bo = 0 and 8, = 0 are not admissible. A quasi-steady local 
balance on (1.1) indicates the possibility of solutions with local behaviour 

k a t x = O  u = B o l  

U - UO(l)X'/('-m) as x+O (4.3) 

U -  uL(t)(L-x)'/(l-*' a s x + L  (4.4) 

or 

for some functions of uo and U,; when these expressions describe the local behaviour 
then the flux -UP", across x = 0 or x = L is finite. Since m > I here, U = 0 cannot be 
imposed on x = 0 or x = L. The other limiting case! U + +m as x +O or x + L: is 
permissible, however, and corresponds to the limits Bo+ +m or EL+ +m in (4.2). 

Since the boundary conditions must be invariant under the transformation group 
we require that 

~ , J u  
U =  t -  a t x = O a n d a t x = L  

J I  
(4.5) 
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implying that 

Boal = 0 Boa,= Bok(2a3+$a,) 

B,a, = 0 (4.6) 

Unless Bo or EL + 00, then it follows from (4.1) and (4.6) that if a6 # 0 and k #+we need 

BL(a6+3a,L) = B,p(Za,+$a,). 

a,=O a6 = 6ka,L/(3 -4k) p + k = $  (4.7) 

a l = O  a3 = 0 a,=O P = 7  

so that k and p cannot be chosen independently, and if a6 # 0 and k = we need 
3 

which give the usual separable solution. Restricting attention to k S p  now implies that 
k S i .  

For k # i  we may without loss of generality take a,= 1 in (4.1) and (4.7) to give 
infinitesimals 

A 6 L  
f=-  f. 

3-4k 
i = x( L - x )  

The corresponding similarity variables may be derived in the usual way and we may 
write the solution in the form 

From (2.25) it follows that (4.8) may be derived from the solution 
= X / t ( 3 - 4 k ) / 6  U = tkf (7)  

where f is the same function as in (4.8). f (7 )  then satisfies 

subject to 

at ? = O  f = &  
as q++m f -  BLL37-3 

(4.9) 

(4.10) 

We will not attempt to discuss the parameter ranges under which there exists a solution 
to this problem. 

When k = -$ we may integrate (4.9) once to give 

In the limit E L +  +m we then obtain 
f= (&4/3 + 2 -3/4 7 )  

so that (4.8) becomes 

which is equivalent to a closed form solution given by Hill [121. 
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We note that the similarity solution (4.8), subject to (4.10) with BL finite, corresponds 
to initial conditions 

at  f = O  x > o  u = o  

and for k < the large-time behaviour takes the form 

k L .  I\-’ 

\I-LI as i + + w  X < i  

4.22. m=$. We now generate solutions to (2.4)-(2.6) on the domain O s  X s  L. We 
start by constructing solutions to (2.6) and we then derive the corresponding solutions 
to (2.5) and (2.4). Since we require X = 0 on X = 0 and on X = L, it follows from 
(2.21) that for A,#O we need 

W = -A2/A7 o n X = O  

W = - ( A  2 +  A&)IA, on X =  L. 

Replacing W by W + ( A , + A , X ) / A ,  leaves (2.6) unchanged, so we may without loss 
of generality consider boundary conditions 

w=o on X = O  and X = L. (4.11) 

We then need 2= $ = O  at X =0, W = O  and at X = L, W=O,  so it follows from 
(2.21) that 

A,=  A,= A,= A,=O 

and the resulting infinitesimals are then 

$=A,W .?=A,W .i. = A, +$A,T. 

If A, = 0 we write A , / A ,  = y and the relevant similarity form is 

W = h ( X -  y W T ) .  

The general solution of this type may be written 

W s +  k ,  W +  ko= 54Of3(X - 7WT) 

where ko and k,  are arbitrary constants. It is not then possible to satisfy both boundary 
conditions (4.1 1). 

If A,#O we write A,/A,= y ,  A I / A 6 =  -$To to give self-similar forms 

W = -(To - T)”’h( X - y W )  T S  To. (4.12) 

The choice (T0-T)’’2, rather than (T-T0)”2, is made so that the boundary 
conditions may be satisfied for a real function h ;  thus the solution (4.12) extinguishes 
at a finite time T = To. We note that W < 0 is needed to give U > 0 and this motivates 
the choice of sign in (4.12). It follows from (2.23) that the solution (4.12) can be 
deduced from the separable solution 

W = -(To - T ) 3 / 2 h (  X )  

which corresponds to y = 0. 
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Introducing q = X - y W ,  we need h ( q ) = 0  on q = O  and q = L  so that h ( 7 )  is 
given by 

(4.13) 

where 

At q = L / 2  we have h = 8 a / L ,  which is its greatest value. Equations (4.12) and (4.13) 
give an implicit expression for W. 

It then follows that V is given by 

(4.14) 
-1 / (4 (To-  T ) - 3 / 2 ( ( 8 a / L ) 4 - h 4 ( q ) ) - 1 ’ 2 +  y )  

1 / (4 (  To - T)- ’ / ’ ( (Sa /L)*  - h4( q ) ) - ’ l 2  - y j  
7 < L / 2  
q > L / 2 .  

V = [  

For V to be bounded we require that 

and this is also the condition that (4.12) and (4.13) give W as a single-valued function 
of X. Hence this solution is only valid sufficiently close to the extinction time. We 
have in particular that 

JV 
at X = O  _- ( i ~  (TO- T P 2 +  y )-’ and dX-O 

L2 v =  - 
with 

J V  -1 

at X = L. _-  
dX -O (To - - y ) and 

At 

L 3 / 2  8 a y  
L 

X = - + ( T o -  T )  
2 

we have 
v=o 

and 

which is its minimum value. 
Finally, U may be determined from 

27 JT 
giving 

L 1/2 3 

R <: (To-TI-  h (7) 
8(1+  y (  To- T)”*((Sa/ L ) 4 -  h 4 ( q j ) ’ / 2 / 4 ) 3  

(4.15) “=[ (To- T) ’ l2h3(q )  q>-. L 
8 ( 1 -  y (  To- T)”’ l ( (8a/L)‘ -  ha( q ) )”1 /4 )3  2 
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The solution (4.15) satisfies U = 0 on X = 0 and on X = L. Such problems for (1.1) 
with0 < m < 1 are of physical importance and have been discussed in detail by Berryman 
(see, for example, [16]) who studied the way in which the separable solution U =  
( 4 -  t)l”f (x) is approached as to- t+O+. The family of exact solutions (4.15) provides 
a test case for such analyses, and tends to the separable solution as To- T+O+, as 
required. 

4.3. Infinite domains 

The new solutions we are able to derive for infinite domain problems are all for m =$ 
For the case m =$, the requirement that x -m be invariant under the transformation 
represented by (2.20) gives a, = 0 (if we write y = l /x then it follows that y^ = a, - a3y - 
a,y’). The discussion of this case on p 298 of Bluman and Cole [ I ]  neglected to consider 
the behaviour of x + a; it is also misleading in that (2.1) does have acceptable solutions 
corresponding to initial conditions with U = 0. 

The two boundary value problems we discuss give solutions which preserve total 
mass, firstly for (2.5) and then for (2.4). 

4.3.1. Mass-preserving solutions to (2.5). The relevant boundary conditions on (2.5) are 

as X + - m  v+ 0 

as X + + m  v+o. 
We assume that the total mass 

m 

Q = V d X  

(4.16) 

(4.17) 

is initially finite; (2.5) and (4.16) then imply that it is independent of T. 
Writing 

X 

W = / - -  V d X  

gives 

as X + - m  W+O 

as X + + a  W+ Q 
(4.18) 

as conditions on (2.6). We therefore need W +  0 as X + -m, W +  0 and as X + +a, 
W - Q, giving 

Aa=O A,=O A, = -2A,. 

If A,=O then the boundary conditions (4.18) cannot he satisfied by the resulting 
self-similar solution. If A, # 0 we write A,/A3 = -2X0/Q, where Xo is an arbitrary 
constant; by translations of T and X we may without loss of generality and for later 
convenience then take A ,  = 0 and A2 = A3X0 to give 

+=0 2 = A,(X - 2X0 W/Q+Xo) f = f A , T .  

The resulting similarity solution takes the form 

W =  h(v)  with q =(X-2XoWW/Q+Xo)/T3” (4.19) 
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so that the solution is given parametrically by 

We have 

where 

Therefore 

where 
(4.20) 

The maximum value of 1g(q)1 is a 2Q2/4, and this occurs at q =0, where W =  Q/2 
and X = 0. Hence for X,<O it follows from (4.20) that we require 

T >  (-XU~*1Q1/2)”’ 

for the solution to be acceptable. 
We also obtain 

U = T3’2f(q)/“’’2+ 2Xug(q)/  Q)’ 

f(q)= -8 ~ g n ( Q ) q ’ ( ( 4 / u Q ) ~ + q ~ ) - ~ ’ ~ .  

where 

We note that at X = 0 

(4.21) 

We also note that (4.17) implies that 

r- .,.. . _, 

J -m 

AlJ 0.5 =-@. 

If X ,  > 0 then we have the following initial conditions at T = 0 

Q 
2% 
Q 

2% 

W =- ( ( X  + X u ) H ( X  +Xu) - ( X  - X o ) H ( X  - Xo))  

V = - ( H ( X  + X J  - H ( X  - X, ) )  

Q 
2x0 

U = - ( S ( X  + Xu)  - S ( X  - X , ) )  

where H( Y )  is the Heaviside step function. We have thus in particular generated a 
solution to the initial-boundary value problem for (2.4) subject to 

at T=O 
at X = O  u = o  
as X + + m  u+o 

U = M6( x - X u )  
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where M=-Q/2X0 is the total mass at T=O. As might be expected, as T+O this 
solution behaves asymptotically as an instantaneous source solution for U centred at 
X = X,, while for large T it approaches the usual dipole solution. The solution satisfies 

1,- X U  d X  = MX, 

for all T. 

which corresponds to setting X, = 0. 

4.3.2. Mass-preserving solutions to (2.4). We now seek solutions to (2.4) such that the 
total mass 

The solution for V generalizes the solution given in section 4.12 of Dresner [71 

m 

M -  I_, U d X  

which is assumed finite, is independent of T. The relevant boundary conditions are 

as X + + m  U+O 

as X + + m  U+O. 
(4.22) 

Mass-preserving solutions to (2.4) are of interest in, for example, semiconductor 
applications [8]. 

Writing 
V = \ - - U d X  X 

then gives 

as X + - m  v+o 
a s X + + m  V + M  

(4.23) 

as conditions o n  (2.5). 
We now write 

X 
W = j-m V d X  (4.24) 

to give 

as X + -m w+o 
as X + +m W = M X + o ( X ) .  

We note that if the first moment 
m 

(4.25) 

(4.26) 

is unbounded then the integral (4.24) may not exist. However, the similarity solutions 
we can derive turn out to have at least one of 

X 

and 1: ( V -  M )  d X  
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bounded. We consider the former case; solutions for the latter case can then be obtained 
by writing 

W + = W - M X  . X + = - X  T + = T  (4.27) 

with 

U'(X', T+)  = U ( - X ,  T ) .  

We note that even when (4.26) is unbounded, the integral result 
r m  

J-m X (  U -  U,) dX = O  

holds, where U = U o ( X )  at T = 0. 
The conditions (4.25) require that 

A, = AS = 0 A,= MA7-A3 

so that 

rt-= (A,+  MA,) w 
2 = A,+ A,X + A, w 
? = A ,  +j(2A3+ MA,) T 

giving 

2- a / M  = A,+A, (X  - W / M ) .  

(4.28) 

Before proceeding further it is instructive to consider the instantaneous source case 
when 

at T=O U = M S ( X )  V =  M H ( X )  W = M X H ( X ) .  

These initial conditions require that A, = A, = 0, leaving 

rt- = ( A ,  + MA,) w 
2 = A , X + A ,  w 
i. = ~ ( z A ,  + MA,) T 

(4.29) 

so that the problem is invariant under a two-parameter group. This means that the 
functional form of the solution may be determined without further reference to the 
differential equation; the analogous problem in linear diffusion is discussed in Bluman 
and Cole [ I ]  pp221-6. The similarity form corresponding to (4.29) may be written 

(4.30) 

where y = 3A3/2(2A,+ MA,).  Since the instantaneous source solution must take the 
form (4.30) for ail values of y, we need 

W 
M 

X =-+ T'h( W / T 3 / 2 - " )  

h ( v ) =  k l t l  

where k is a constant, giving 

W kT'l2 x = - + -  
M W '  
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To determine k we must substitute into (2 .6) ,  giving k2 = 16. Assuming M > 0 we need 
k = -4 so that 

(4.31) 

and 

W=(MX+(M2X2+16MT1/2)1/2)/2. 

Equation (4.31) describes the large time behaviour of the solutions we shall now derive. 
Returning to (4.28) we must consider three subcases as follows. 

( I )  A ,  # 0, ZA, + MA, # 0. By translations of T and X we may then without loss of 
generality take 

A , = A , = O  

so !hat we recover (4.29) and the similarity solutions take the form (4.30). Initial 
conditions appropriate to the self-similar forms (4.30) are 

-w 
M 

X = - - K W '  (4.32) 

where p = 2y/(3 - 2 y )  and K is an arbitrary constant. We note that when K # 0 we 
could without loss of generality take M = 1, 1K1= 1 by replacing 

at T=O 

W by (MIKl) ' / ( ' -*)W 

X by (M+IKl)''('-')X 

and 
T by (Ml+!LK2)2/'3'1-"))T 

When K = 0 !be so!ntia~ is given by (4.3!) far z!! y. !f K t 0 !he. :.der !he 
transformation (4.27) the initial condition (4.32) becomes 

where K' = ( M K ) - ' / " /  M. We may therefore without loss of generality restrict attention 
to the range y < giving -1 < p < 1 .  We note that p = 1 is not acceptable for K # 0 
because we require W - M X  as X++m.  In (4.30) the function h(7)  satisfies 

as ?+O+ h + - m  

as 7++m h--Kv' 

An asymptotic balance shows that, more precisely, 

as v + O +  h - - 4 / 7  

so that the large-time behaviour is given by (4.31). 

(4.33) 

(4.34) 
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We shall need to discuss the cases p<O and p>O separately. We first note the 
following borderline cases: 

(a) p = 0 ( y  = 0). Solving (4.33) then gives 

h = - K  - 4 /  7 

which gives the instantaneous source solution (4.31) with X translated by K. 

(b) y = 1 ( y  = a). The solution to (4.33) is then 
h = - K q  -417  

giving the instantaneous source solution for total mass M I ( ] -  K M ) .  

(c) y = -1 ( y + m ) .  Returning to the initial condition (4.32) it is clear that the solution 
to (2.6) is given by 

W 4 ( T + ( K / 4 ) 2 ’ 3 ) ” 2  
M W 

X = - -  (4.35) 

which is the instantaneous source solution (4.31) with T translated by ( K / 4 ) 2 1 3  

We now discuss the remaining cases. 

(i) O<k< 1 (O<  y < i ) .  Initial conditions are given by (4.32) for X > O  together with 

at T = O  w = o  for X < 0. 
For the solution to make sense for all T >  0 we need K (0 and then 

at T=O W - ( - X / K ) ” ”  as X + 0’. 

F$r > 0 the so!ntion is F.n!!i\,a!ncd fer suffi.cicn!!y T h”! is accep!ab!c fer 
T >  ( M  ~~p( -g (q ) ) )~” ’ -” ’  (4.36) 

where g = dh/dq. When K < 0 the condition g > 0 holds. 

(ii) -1 < f i < O  ( y  <O).  In this case (4.32) describes the initial conditions for all X .  If 
K > 0 the solution is valid for all T > 0 and 

at T = O  W - ( - X / K ) ” +  as X + -W. 

For K < 0 the solution is acceptable only when the condition (4.36) is met 
For both (i) and (ii) we have 

as X + + m  W- M X + K M ’ + * X ~  
so that the first moment (4.26) is unbounded if y > 0 and 

as X + - m  W- -4T”’ /X  for T>O 

The solutions for V and U are given by 
V = M / (  1 + M T 2 y - 3 / 2 g (  7)) 
u = - M 3 T 3 1 - 3  f ( n ) l ( l  + M T 2 y - 2 ’ 2 g ( q ) ) 3  

..,her- nllrlr 

When K > O  in case (i) and K < O  in case (ii), U is negative for sufficiently large 
positive X. 
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(2) A, = 0, A, f 0. By translating T we may again without loss of generality take A, = 0 
to give 

~ = M A , W  2 - k / M  = A Z  i. = $MA, T 

and the resulting similarity solution takes the form 

W 
M 

X = -+$U In T + h( W/ T3Iz) (4.37) 

where U = A,/MA,. The similarity ordinary differential equation is then 

(4.38) 

Writing g = d h / d q  gives 

which is to be solved subject to g +  +m as q + O+; this implies that g - 4 / q 2  as q +O+. 
The behaviour as q + +CO is given by g - v / q .  

The arbitrary constant which arises on integrating g to give h corresponds to a 
translation of X. Writing 

h = vln q - ( g - u / q )  d q  J: 
w e h a v e h - - 4 / q a s  q ~ O + a n d h = u I n q + o ( l ) a s q ~ + o o  

If U > 0 the solution is valid for all T > 0 and we have 

W 
M 

X = - + u l n  W at T=O 

with 

as X + + m  

a s X + - m  W-exp(X/v) at T=O W--4T’I2/X for T > 0. 

W - MX - vM In( MX) for all T 

If U < 0 the solution is only valid if 

T > ( M  ~ ~ - g ( v ) ) ) ~ ” .  

The large time behaviour is given by (4.31). 

(3) A,#O, 2A3+ MA,=O. By translating X we may take AZ=O giving similarity 
solutions 

W 
M 

X =-+e-”rh( W/eAT) 

where A = -A,/A,. The similarity ordinary differential equation for h(q)  is 

(4.39) 
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We require h +  -CO as 17 +O+, and (4.39) then implies that 

requiring A > 0, whereas a far-field balance indicates that 

It therefore seems that there are no solutions of this form satisfying the required 
boundary conditions. 

In this subsection we have in cases (1) and (2) constructed new mass-preserving 
solutions for U which may be determined from similarity forms for W. Closed form 
solutions of the relevant similarity ordinary differential equations cannot in general 
be determined, however. 

5. Discussion 

We begin by considering a generalization of ( l . l ) ,  namely 

Ju J2 - ( K ( u ) )  
J t  Jx2 

together with its integrated forms 

a0 - = - J ( K  (2)) 
at  ax 

and 

Jw 
J t  

where 

J U  Jw 
Jx Jx 

U=-. =- 

We now write 

U = ( a , u t + b l ) / ( a 2 u t + L . ,  u = a l u t + b , x t  

w - ; x u =  w -zx U 

x = cvt+dxt t = t  

(5.4) t I t t  

t 

which generalizes transformations we have already considered; a , ,  b ,  , a2 and b, are 
constants such that a l b 2 - b , a 2 =  1. 

Relations (5.4) imply that 

with 
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where 

SO that equation (5.1) may be mapped into the more general equation (5 .5 ) .  
If we consider the related transformation 

U = (A ,u++  B J / ( A , u + +  8,) 

x = A,w++ B2x* t = t  

w = A , w + +  B , X +  
+ (5.7) 

where A, ,  B , ,  A, and B2 are constants such that A , B , - B , A 2 = 1 ,  then we have 
U+ = Jw+/ax+, and equation (5.2) is mapped to 

av+ a 
-- - ( ( A , U +  + B,)K (- 
~ t +  -ax+ 

Combining the two transformations (5.4) and (5.7), equation (5.2) is mapped to 

by appropriate redefinitions of the variables. It follows in particular that the equation 

is exactly linearizable. 

and (2.4) may both be mapped to 
Returning to equations (5.1) and ( 5 . 9 ,  it follows from (5.6) that equations (2.1) 

a u + p  
a t  

(5 .8 )  

where a3 -,By = 1, again by suitable redefinitions of the variables. The symmetry group 
of (5.8) arising from the symmetries (2.22) and (2.23) of (2.1) and (2.4) is not a point 
transformation at any of the three levels (5.1) to (5.3), and equation (5.8) was not 
noted as a special case by Bluman et al [17]. The relevant transformation is, however, 
a point transformation for the system 

which implies both (5.2) and (5.3). Indeed all the symmetries we have discussed for 
equations of the form (5.1) to (5.3) arise as point transformations of this system. 
Bluman el ai 1171 considered the system of the form 

which implies both (5.1) and (5.2). Some of the transformations we have considered 
are not local symmetries for this system (see (2.22) and Bluman and Kumei Cl81 p 362). 

Using the transformations of sections 1 and 2 of King [ 191, we may use the solutions 
of section 4.3.2 to generate new mass-preserving solutions to 

(5.9) 
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which is a special case of ( 5 . 8 ) ,  uo being a constant. Such solutions with mass M may 
also be derived (as in section 3 of King [191) from solutions to the boundary-value 
problem 

J u  d 

J l  J x  

as x+O u + t m  

as x +  M u + t m  

These boundary conditions may be applied to solutions of the form (4.8) with L= M, 
and these map to solutions in section 4.3.2. Such solutions did not arise in the analysis 
of King [19] which considered only even mass preserving solutions; the resulting 
solutions to (5.9) are not even in x. 

We now make some comments about our similarity solutions. Firstly, it is evident 
that many of these solutions, such as those of subsection 4.3.1, satisfy initial conditions 
which contain a lengthscale. Usually this would make solution by similarity methods 
impossible; the additional parameter in the symmetry groups we have been discussing 
makes it feasible in these special cases. 

Similarity forms such as (4.30) are also unusual in that the similarity variable 
depends on the dependent variable W. This has implications for the direct method of 
Clarkson and Kruskal [20] which is intended to lead to all classical similarity forms, 
as well as to non-classical ones. Their assumption that the similarity variable depends 
only on the independent variables implies that their method will not determine similarity 
forms such as (4.30); in other words the assertion immediately following equation 
(1.3) of [ Z O ]  does not seem to be correct. If we consider a partial differential equation 
for wj(x, t )  then the invariant surface condition 

, J w  ,Jw 
J x  Jf 

x - t  1-=  6 (5.10) 

used to determine possible similarity forms (see, for example, Bluman and Cole [l]) 
has two invariants which are constant on each characteristic. We write these as 

I ,  = rl(x, 1, W )  

I , = ( X -  W / M ) / T Y  2 -  

r2-  r2(x ,  t, w ) .  

(Note that we can write 
1 - w / T ~ / ~ - Y  

in the case of (4.30).) 
A similarity solution can then be written in the form 

I , = h ( 1 2 ) .  

If there exists a function F such that 

(5.11) J 

Jw 
- F ( I ,  , 12) = 0 

then we may take F as the similarity variable, and the similarity solution is then of 
the form discussed by Clarkson and Kruskal [ZO]. It is easily seen that (5 .11)  implies 
that 21 f is independent of w, or that ?= 0. In practice this is very often the case but 
it need not always be so, as we have illustrated. 



Exact results for nonlinear diffusion equations 5745 

We conclude by summarizing some of the main features of our results. Firstly, the 
results for m = f  (sections 3.3,4.2.2 and 4.3) are of particular significance because they 
are based on non-local symmetries of the type introduced in [ 101 and [ 171. The problems 
discussed in sections 4.2.2 and 4.3 are among the first boundary value problems to be 
solved by such techniques. 

The physical relevance of our solutions may be illustrated by the following applica- 
tions. Equation (1.1) subject to conditions 

u = o  at x=O and at x = L  
arises in a variety of applications, including plasma physics (see [16]); the solution 
(4.15) applies to this case. The solution (4.20) can be used to represent a heat pulse 
in superfluid helium, generalizing the solution to (2.5) given in section 4.12 of [71 to 
the initial conditions I" for IX\<X, 

at T=O 1.'= 2x0 

rather than the delta function initial conditions of [7]. The corresponding solution to 
(2.4) given by (4.21) is relevant to problems on a semi-infinite domain in which the 
surface acts as a perfect sink so that 

at X=O u=o. 
Finally, in section 4.3.2 we constructed a family of mass-preserving solutions for which 
(2.4) may be reduced to a similarity ordinary differential equation. Mass-preserving 
solutions have a wide range of possible applications, and the new solutions given here 
again generalize existing solutions which correspond to delta function initial conditions. 

Many of the results of this paper can be extended to significantly more general 
classes of nonlinear diffusion equation, and such generalizations will be reported 
elsewhere. 
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